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Abstract: A unique low-profile vortex generator, termed the Conformal Vortex Generator
(CVG), has recently been discovered to provide fuel saving of greater than 1%on commercial
aircraft. The CVG is an adhesive backed film that creates a spanwise varying aft facing step.
While the CVG has been shown to provide fuel savings, the driving fluid mechanism behind
the CVG is still unknown. The current work aims to understand and validate the behavior
of the CVG at subsonic conditions as well as investigate the behavior of both the CVG
and traditional aft facing step at supersonic conditions. The subsonic simulations used a
model based on water tunnel and flight test experiments. The goal of these simulations was
validation and to provide data not available through experimentation. This study concluded
that the simulations could successfully model the flow over a CVG by showing strong
qualitative and quantitative similarities between computational and experimental data. It
was also shown that the CVGs imparted strong spanwise variations in the boundary layer
andwall shear stress that had both a ReH and CVG length (L) to width (W) ratio dependence.
The second set of simulations were based on flight scale conditions (the same as seen in
the CVG real world application) and investigated the local flow physics of the CVG. These
simulations were performed with a local freestream Mach number of 1.3 and an altitude
of 10,000 m. It was shown that at these conditions, the CVG behavior still exhibits L/W
ratio dependence and spanwise variation in the boundary layer thickness and wall shear.
However, the results varied from the subsonic scaling. The CVGs also impart spanwise
varying vorticity into the flow that is not consistent with a traditional step. Lastly, it was
concluded that the addition of a downstream ramp past an aft facing step can mitigate the
supersonic expansion fan that occurs over a step in supersonic flow.
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Cp = coefficient of pressure

g = gravitational force
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δ∗ = boundary displacement thickness
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CHAPTER I

INTRODUCTION

1.1. Motivation

Transportation industries all share a common priority; increasing fuel efficiency.

One way this can be achieved is through increasing the aerodynamic performance of their

respective means of transportation (e.g. drag reduction). A common way to improve this

performance on airliners is through flow control. Flow control is achievable through active

and passive methods. Active methods are typically able to achieve higher amounts of drag

reduction, but at the cost of design complexity, maintenance, and operational energy. Thus,

passive methods are more frequently used, with one of the most common and impactful

being the vortex generator (VG). They can be implemented in a variety of applications

including use on aircrafts, automobiles, and wind turbines. VGs are commonly used due to

their ability to increase lift, reduce drag (in certain applications), and stabilize supersonic

shock waves [1]. These effects occur due to the VG’s ability to induce vortex structures into

a flow regime that energize the boundary layer [2]. Despite these benefits, the traditional

VG has one major flaw, increased parasitic drag. This parasitic drag is introduced due to the

size of the VG. Traditional VGs protrude into the flow on the order of the boundary layer

thickness. Low-profile vortex generators (LPVGs) have been developed to try and mitigate

this issue [1]. However, since most LPVGs have a similar geometry to the traditional
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VG with simply a smaller height, they tend to have a weaker impact on the flow. In an

attempt to remedy this issue, a new type of low-profile vortex generator was created and

termed the Conformal Vortex Generator (CVG). Flight testing has provided evidence that

the CVG provides a fuel saving of greater than 1% when applied on a Boeing 737 [3],

but the mechanism is unknown. This prevents development of an ideal geometry. Further

background information regarding the CVG is provided in section 2.2. The current work

focuses on the investigation of the local impact of the CVG by utilizing computational

simulations.

1.2. Goals and Objectives

The goal of this study was to investigate the flow field induced by the CVGs via

high fidelity computational simulations on a flat plate and an airfoil model. The primary

objectives were to validate simulations with experimental data and use these validated

simulations to identify the dominant flow features produced by the CVG, which would

provide insight into the fluid mechanism responsible for drag reduction observed on Boeing

737 aircraft equipped with CVGs. For the flat plate water tunnel study, the following aims

were carried out:

• Validate the clean flat plate boundary layer with experimental data. Compare simu-

lation results with the Blasius boundary layer solution and experimentally obtained

data.

• Validate flat plate with CVGs by comparing the velocity profiles at different locations

downstream of the CVG with experimental data.

• Utilize these validated simulations to study the impact of the CVG as well as compare

with flight testing data.

For the flight scale study, the following tasks were carried out:

2



• Study the effects of the CVG at flight conditions that match the Boeing 737.

• Validate simulations of a 2D RAE 2822 airfoil with experimental data for the purpose

of investigating the effect of an aft facing step and a downstream ramp.

• Study the local effects of a aft facing step in a supersonic flow with a downstream

ramp.

3



CHAPTER II

BACKGROUND AND THEORY

2.1. Vortex Generators

Vortex generators (VGs) are a common passive flow control device used in a wide

variety of industries, including transonic aircraft, small ultralight aircraft, and even auto-

mobiles [4–6]. While all of these industries utilize VGs, the desired impact of the VGs

change. Aircraft that operate in the transonic and supersonic regimes see benefits from

VGs through mitigation of the interaction between shocks and the boundary layer [7], while

small ultralight aircraft utilize VGs to reduce stall speed which provides an enhancement in

aileron maneuverability [8]. For ground based vehicles, VGs have been shown to decrease

drag as well as increase downward force [9, 10]. While the application of the VG varies, the

enhancements are all achieved through the addition of momentum into the boundary layer

of a flow. An example of vortex generators applied to a commercial airliner can be seen in

Fig. 1.
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Figure 1: An example of a vortex generators used on a Boeing 737-800 wing [11]

2.2. Conformal Vortex Generators

2.2.1. Background

This study focuses on a specific vortex generator, termed the Conformal Vortex

Generator (CVG) (seen in Fig. 2). The CVG is a thin adhesive backed film with triangular

shaped serrated edges. The CVG was originally developed by Edge Aerodynamix (EA) for

the purpose of mitigating losses associated with the application of leading edge protective

tapes for rotor craft blades [12]. Leading edge tapes are installed on rotor crafts to prevent

damage and erosion of the blades, but this protection comes at the cost of increased profile

drag [13]. The EA CVG was found to not only protect the blades, but increase the fuel

efficiency of the helicopter. Following this discovery, the CVG was tested on a range of

aircraft, with a primary focus on the Boeing 737-500. The CVG installed on the Boeing 737

is located just downstream of the slat step (approximately 10% chord) with a tape thickness

of 0.367 mm. This location can be seen in detail in Fig. 3. While it was concluded that the

CVG could increase fuel efficiency for both of these applications, little was known about

the driving mechanism behind this result.
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Figure 2: Two diffrent configurations of CVGs applied to a helicopter blade. Top

image shows the overall application while the bottom shows the two different CVG

types [12].

2.2.2. Wind Turbines

A study was conducted by the National Renewable Energy Laboratory (NREL) to

investigate the use of CVGs on wind turbines [14]. Tapes, similar to the CVG, are applied to

the leading edge of wind turbine blades for several purposes, including improving the power

capture of the turbine and/or protecting the blade to extend its lifetime. The purpose of

this study was to investigate if the CVG performed differently than commercially available

leading edge tapes. An example of how the CVGs were applied to the blades can be seen in

Fig. 4. The turbines tested were 2-bladed Westinghouse WWG-0600 turbines with a total

rotor diameter of 44 m. The parameter that was used for comparison between the tapes was

the power output of the turbine. This study showed a KWH production increase of 6% and

6



Figure 3: Schematic of the CVG tape applied to the Boeing 737 aircraft. The blue

outline demonstrates the location of CVGs [12].

7.4% for the CVG at wind speeds of 7 m/s and 11 m/s, respectively. The sole purpose of this

study was to analyze the change in turbine efficiency. Therefore, no additional information

was provided regarding the fluid mechanism behind this result.

2.3. Governing Equations

The governing equations that are the basis of the simulations used in the the current

study are shown in equations 1 and 2

The continuity equation is given as:

1
ρ

D
Dt

ρ + ∇ · ®u = 0. (1)
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Figure 4: CVG applied to the NREL Wind Turbine [14].

The Navier-Stokes equations are given as:

ρ
Du j

Dt
= −

∂p
∂x j
+ ρg j + µ

∂2u j

∂xi
2 + (µv +

1
3
µ)

∂

∂x j

∂um

∂xm
. (2)

2.4. Boundary Layer

2.4.1. Laminar Boundary Layer

Laminar boundary layer theory is well defined, specifically for a flat plate with

zero pressure gradient. This zero pressure gradient flat plate is the type of boundary layer

investigated in Chapter IV. An exact solution exists for this condition, known as the Blasius

solution [15]. The Blasius solution provides equations 3, 4, and 5. Displacement thickness,

δ∗, is the distance the wall would be outwardly displaced to maintain the mass flux in a

hypothetical flow with no friction. Momentum thickness, θ, is the amount of momentum

that is lost in a flow due to the boundary layer. Finally, the shape factor is a ratio of the

two and is used to determine the nature of the flow (laminar vs turbulent) [15]. The 99%

boundary layer thickness (δ99) for the Blasius solution is:
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δ99 =
4.92x

Rex
1/2 . (3)

The displacement thickness is given as:

δ∗ = 1.72
√
νx
U
. (4)

The momentum thickness is given as:

θ = 0.644
√
νx
U
. (5)

The shape factor is given as:

H =
δ∗

θ
= 2.67. (6)

2.4.2. Transition

When a boundary layer begins to transition from laminar to turbulent, the Blasius

solution no longer holds. Transition can be caused in a multitude of ways, several of which

include the laminar boundary layer becoming unstable or forcing transition through a forced

mechanism. The location in which this transition occurs is very important. For an airfoil, it

is typically better if the flow transitions at the furthest downstream location possible, as this

results in the least amount of drag. This point of transition can be delayed utilizing VGs

similar to those discussed in vortex generator section of this chapter [16]. However, due to

laminar flows being more likely to separate, it can also be advantageous to force transition at

a specific location on an airfoil with a boundary layer trip. Therefore, controlling transition

is a vital aspect of flow control. Fig. 5 shows a schematic of flow over a flat plate that

demonstrates the step involved in transition.
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Figure 5: Schematic of flow over over a flat plate. The location of transition can be

seen near the end of the flow, right before the onset of turbulence [15]
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2.4.3. Turbulent Boundary Layer

A flow transitions from laminar to turbulent if there is a disturbance in the flow or

the Reynolds number is sufficiently high (the exact Reynolds number where this happens

is highly flow dependent). In most applications on aircraft wings, turbulent flow is less

desirable than laminar. This is due to the turbulent boundary layer being thicker and

generating more skin friction drag. However, as mentioned in the transition section, a

turbulent boundary layer is less likely to separate and can be desirable in cases where the

goal is to prevent separation.

One of the most important concepts when trying to understand a turbulent boundary

layer is the law of the wall. The law of the wall states that in a turbulent boundary layer, the

flow at a certain height is proportional to the distance from the wall [17]. The law of the

wall can be seen in Fig. 6. The near wall region is termed the viscous sublayer (or laminar

sublayer). In this region, the viscous forces dominate the flow. This region is defined by,

u+ = y+, (7)

and holds true for y+ < 5. Here the viscous wall unit (y+) is,

y+ =
yuτ
ν
, (8)

the dimensionless velocity (u+) is,

u+ =
u
uτ
, (9)

and the friction velocity (uτ) is,

uτ =
√
τw
ρ
. (10)

This regions length scale is defined by the viscous sublayer length scale (`ν), which is

defined as,

`ν =
ν

uτ
. (11)

The next region is the log-law region (y+ > 30) where the law of the wall states that the

velocity is proportional to the logarithm of the wall distance. The equation for this regime
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is,

u+ =
1
κ

ln y+ + C, (12)

where the most common values of κ and C used are 0.41 and 5 (for a smooth wall)

respectively. The region between these two (5 < y+ < 30) is the buffer layer where neither

Eqs. 7 or 12 hold. More details and the derivation of these parameters can be found in

Kundu’s "Fluid mechanics" [15].

Figure 6: Law of the wall derived by Theodore von Karman [17].
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2.5. Computational Models

2.5.1. Computational Fluid Dynamics (CFD)

Computational fluid dynamics (CFD) is the method of utilizing computers to solve

the governing partial differential equations that describe fluid flow and their related phe-

nomena. These governing equations (Eqs. 1 and 2) cannot be solved analytically except in

specific cases. Therefore, a discretization method is used to obtain an approximate solution

to these equations by transforming these partial differential equations into systems of alge-

braic equations. These algebraic equations are applied to a discrete domain and utilized to

solve for flow properties at locations in space and time. While this method is extremely

useful in solving for flow parameters, the accuracy of CFD solutions depend heavily on the

quality of discretization utilized [18].

2.5.2. Direct Numerical Simulation (DNS) and Reynolds-Averaged Navier-Stokes (RANS)

Themost accurate approach to modeling a turbulent flow is through the utilization of

Direct Numerical Simulation (DNS) where the Navier-Stokes equations are solved without

approximation. Due to the wide range of scales in a turbulent flow, DNS carries an

extreme computational cost. However, in most cases, the mean characteristics of a flow

is the most insightful. Therefore, instead of solving the Navier-Stokes equations (Eq. 2)

instantaneously, one can utilize the Reynolds-averaged Navier-Stokes equations (RANS).

The RANS equations are,

∂(ρui)

∂t
+

∂

∂x j

(
ρuiu j + ρui

′u j
′

)
= −

∂p
∂xi
+ ρgi +

∂

∂x j

(
µ

(
∂u j

∂x j
+
∂u j

∂xi

))
. (13)

These equations are derived utilizing the Reynolds decomposition, which states a scalar

quantity can be represented as the sum of the mean value and the fluctuations about the

mean as:

Φ = Φ + Φ′(t). (14)
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However, this derivation leads to a set of equations that is not closed, meaning that there

are more unknowns than equations. To close the RANS equations, turbulence models (i.e.

k-ω, k-ε , etc.) are utilized to approximate the parameters needed. Due to the utilization of

a commercial CFD package in this study, the derivation of these models will not be shown

but can be found in Ferziger’s book, "Computational Methods for Fluid Dynamics" [18].

2.5.3. Large Eddy Simulation (LES) and Detached Eddy Simulation (DES)

Large Eddy Simulation is a method of solving the Navier-Stokes equations that is a

middle ground between DNS and RANS. LES utilizes filtering to lessen the computational

cost at the expensive of not resolving the smallest scales of the flow. Instead, LES focuses

on resolving the large, energy dominant features of a flow that provide the most transport

of properties. It then utilizes low-pass filters to obtain an equation for the large scale flow

features. The LES equations are,

∂ūi

∂t
+ ū j

∂ūi

∂x j
= −

1
ρ

∂ p̄
∂xi
+ ν

∂2ūi

∂x j∂x j
−
∂τi j

∂x j
. (15)

Here τi j is,

τi j = uiu j − ūiū j, (16)

and is called the subgrid-scale (SGS) Reynolds stress. This Reynolds stress contains the

local averages of the small scale flow features and is approximated utilizing SGS modeling.

More information on these SGS models can be found in Ferziger’s book, "Computational

Methods for Fluid Dynamics" [18]. A method that utilizes the benefits of both LES and

RANS is Detached Eddy Simulation (DES). DES utilizes a RANS solution in regions where

the turbulent length scale is smaller than the grid sizing and LES in regions where the grid

sizing is smaller than the length scale. DES is utilized in situations where the higher

computational cost of LES is too demanding [19].
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CHAPTER III

COMPUTATIONAL METHODS

3.1. OSU HPCC

The Oklahoma State University High-Performance Computing Center (HPCC) has

two computational clusters, "Cowboy" and "Pete". These clusters were vital to this inves-

tigation as computational simulations were run on 10 to 50 nodes (or 120-600 processors),

and allowed for the use of extremely fine meshes to be utilized in the CFD simulations. The

typical run time for a simulation was 10 days, resulting in utilization of 30,000-150,000

core hours per simulation.

Cowboy was acquired from Advanced Clustering Technologies and was funded

by the National Science Foundation (NSF) grant OCI-1126330. Cowboy consists of 252

standard compute nodes consisting of dual Xeon E5-2650 hex core CPUs (with clock speed

of 2.0 GHz) as well as 32 GB of RAM (with a speed of 1333 MHz). The cluster also

contains two fat nodes, each having 256 GB of RAM and also a NVIDIA Tesla C2075

graphics card. This totals to 3,048 cores, 8,576 GB of RAM, an aggregated peak speed of

48.8 TFLOPs, and a total shared disk space of 92 TB.

Pete was also acquired from Advanced Clustering Technologies and was funded by

the MRI Award 1531128. This cluster consists of 164 standard compute nodes, each with

two Intel 6130 CPUs and 96 GB of RAM. Pete has two large memory nodes that consist of
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the same CPUs but instead have 768 GB of RAM. Pete utilizes a 100 GB/s Intel Omni-Path

low-latency interconnect and a 360 TB high-speed parallel file system.

3.2. Star-CCM+

The CFD software utilized in this study was Star-CCM+ developed by Siemens,

a commercial CFD package designed for use in engineering applications. The specific

capabilities discussed below outline why Star-CCM+ was chosen and was instrumental in

executing this study. Star-CCM+ contains a built in 3DCAD,whichwas utilized to construct

most of the simulation geometries. However, since the CAD package only provides basics

tools, parasolid files were imported when the geometry for simulations were too complex.

Star-CCM+ also provides built in automated meshing capabilities including the production

of tetrahedral, trimmer hexahedral, and polyhedral unstructured meshes. The previously

mentioned algorithms also have the capability of utilizing prism layers, which help resolve

the boundary layer of a flow in the near wall region. Additionally, Star-CCM+ has the

capability to run a large range of physics and flow specific models. These models include

RANS, DES, LES, and qDNS, with multiple sub-models for each. More information

regarding these models can be found in Chapter II.

3.3. Solver

Quasi-Direct Numerical Simulation (qDNS), also known as Wall-resolved Large

Eddy Simulation (LES) was used for all simulations in this study due to the size of the flow

features being analyzed. It was necessary to use a solver that would resolve and notmodel the

near wall flow characteristics. qDNS is based on an LESmodel but can turn off the sub-grid

scale model in the attempt to properly resolve the near wall features. This is accomplished

by incorporating an extremely fine mesh in the near wall region. The governing fluid partial

differential equations were solved with a finite volume method utilizing an implicit second

order temporal discretization and a bounded-central discretization for the convection terms
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of the equations. Two solution procedures were used to solve the governing equations. A

segregated method was used for all water based simulations while a coupled method was

used for air based simulations. The segregated method solves the equation for a single

variable for all cells and then moves on to the next variable, while the coupled method

solves for all variables in a given cell and then repeats for all cells in the simulation. A

segregated method is best for standard incompressible flows while coupled is best when

dealing with supersonic flows involving shocks and expansion fans.

3.4. Mesh

All of themeshes for the simulationswere constructed utilizing the built in automated

mesher of Star-CCM+. Since qDNS was the selected solver for this investigation, a high

density mesh was required. To try and capture the near wall aspects of the boundary layer,

the first cell mesh size needed to be on the order of the viscous sublayer length scale (`ν)

(Eq. 11) in the vertical direction. This requirement is caused by the use of qDNS. Since

the subgrid model is disabled, which would typically model the flow in the buffer and

viscous sublayers, there needs to be adequate resolution to resolve the full boundary layer

(see section 2.4.3). This value is on the order of 10−6 m for the air based simulations and

10−5 m for the water based simulations. Prism layers were then used along the bottom wall

of the simulations to achieve this high density mesh in the near wall region. Twenty layers

were used with their vertical spacing growing from <1 `ν to 10 `ν, at the wall and top of

the boundary layer respectively. Table based mesh adaptation was also utilized to more

accurately capture the supersonic features in the flow. These requirements together meant

that the mesh count for the simulations ranged from 20-60 million cells.

3.5. Boundary Conditions

The boundary conditions for the water tunnel based simulations consisted of a

velocity inlet, a pressure outlet, periodic side boundaries, walls, and a slip wall. The
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velocity inlet was set up with the same fluid property conditions as would be seen in the

water tunnel. The inlet velocity profile was experimentally found using PIV and then

imported into the simulation. The pressure outlet was set up to act as the exit of the water

tunnel. A periodic interface was used for the side wall to simulate an infinitely long (in

the spanwise direction) flat plate. Normal no-slip walls were used on the bottom surface

while a slip wall was used on the upper surface. The slip wall was used to remove the

need to adequately resolve the boundary layer that would be forming on the bottom of the

water tunnel lid. Due to the height of the simulation, this had negligible impact on the flow

characteristics that were being investigated. The boundary conditions for the flight based

simulations were identical except for the top wall being replaced by a free stream condition.

This approach was chosen as supersonic effects would be greatly altered by the presence of

a wall.
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CHAPTER IV

SIMULATION I: PIPER CHEROKEE VALIDATION

4.1. Flight Testing

The first experimental tests performed on the CVG analyzed the wall shear down-

stream of the CVG. These wall shear stress visualization tests, performed by Edge Aero-

dynamix, applied CVGs on a Piper Cherokee aircraft and then utilized a biphenyl solution

to visualize areas of high and low shear [20]. This solution is sprayed on the wing using

a technique called "dry-spraying", the process of applying a coating of dry powder to the

test surface by having the acetone in the solution evaporate prior to its contact with the test

surface. In flight, this powder will be removed by high wall shear leaving white regions

(where the powder remains) that have lower shear stress. These low shear regions appear

downstream of the valley of the CVG and are termed low shear "diamonds" and are char-

acterized by their length (Ld). The before and after of these tests can be seen in Fig. 7.

Additional details of these tests, as well as an analysis of the patterns are provided in [21],

[22], and [23].
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Figure 7: Wall shear visualization on a PiperCherokeewing utilizing biphenyl solution

(a) before, (b) after flight tests.

4.2. Water Tunnel Testing

Flat plate tests were performed in the Experimental Flow Physics Lab at Oklahoma

State University to investigate the boundary layer downstream of the CVG. The flat plate

and the CVG were scaled to replicate the flow physics seen on the Piper Cherokee wing

during flight (details discussed in the Flight Testing section of this chapter) . This scaling

was focused on a CVG with laminar boundary layer inlet and vorticity was assumed to

be the parameter of interest. The scaling was done assuming that the CVGs impact could

be determined based on the following parameters: the inlet boundary layer conditions

(thickness (δ), the freestream velocity (U∞), and the pressure gradient (dp
dx )), CVG geometry

(height, H; width, W ; and length L), and the fluid properties (density, ρ; and kinematic

viscosity, ν). Utilizing these parameters and dimensional analysis the scaling law,

ωH
U∞
= φ

(
δ

H
,

U∞H
ν

,
dp
dx

H
ρU2
∞

,
W
H
,

L
H

)
, (17)

could be derived. A limitation that was imposed on this scaling was that the CVG’s height

could only be scaled in integer increments of its original manufactured size (by stacking

CVG film layer). The CVG scaling was determined by utilizing Eq. 17, the flight properties

of the CVGs, and the height limitation. Despite the height limitation constraining the

scaling significantly, several appropriate testing conditions were obtained and can be found

in Table 1 (where n is the integer number of CVG heights or film thicknesses).

The flat plate used was 750 mm long by 300 mm wide and had CVGs applied to it

20



Table 1: Required water tunnel testing conditions based on number of film layers

n U∞ (m/s) δ (mm) x (mm)

1 4.7 0.7 93

2 2.3 1.4 186

3 1.6 2.1 279

4 1.2 2.8 371

5 0.94 3.5 464

6 0.78 4.2 557

that were scaled best on the methodology explained at the beginning of this section. Particle

image velocimetry (PIV) was utilized to extract velocity profiles at a multitude of locations

across the plate. It is important to note that the view of the camera was obstructed by the

CVG itself and did not allow any data to be taken upstream of the peak. Locations where

data could be acquired are shown in Fig. 8. These experimental velocity profiles were used

as both inlet conditions and comparison data across different locations on the plate for the

computational simulation. Additional details of the experiments, including scaling, results,

and analysis, can be found in [23], [24], and [25].

Figure 8: Schematic of all the locations where velocity data was collected.
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4.3. Simulation Parameters

Specifics of the CFD package, mesher, and solvers used in this chapter can be found

in Chapter III. The simulations in this chapter were built to match the geometry and flow

physics of the experimental water tunnel testing. The inlet of the simulation was equivalent

to roughly 150 mm downstream of the leading edge of the plate. The corresponding width

was 300 mm, but the downstream length was increased to 1 m as simulations were not

limited by the length of the tunnel test section. The first simulation was based on the flat

plate model, while the subsequent runs were based on the flat plate with CVGs applied (all

had the same domain size). Following the meshing guidelines discussed previously, all of

the water tunnel based simulation domains had a total of 65 million cells. There were 3

different inlet velocity profiles used for the simulations, (0.6, 0.9, and 1.2 m/s). A time step

of 2×10−5 seconds was used in this simulation. This ensures the stability of the simulations

as it satisfies the Courant Friedrichs Lewy (CFL) condition. This condition is met when the

Courant number,

C =
u∆t
∆x

, (18)

is less than 1. See Table 2 to see full list of parameters.
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Table 2: Geometry and flow properties of water tunnel simulations.

Parameter Value

H 1.5 mm

L 105 mm

W 76 mm

x 300 mm

Dimension 1 x 0.3 x 0.305 m

ρ 998 kg/m3

µ 9 × 10−4 Pa-s

U 0.6/0.9/1.15 m/s

δ 2 − 2.5 mm

Cell Count 65 million cells

4.4. Validation

4.4.1. Flat Plate

Validating computational simulationswith experimental data is extremely important.

But before analyzing and validating simulations with the CVG, it was important to ensure

the selected methods and solvers adequately modeled the developing boundary layer over

the flat plate. PIV data was taken at 158, 250, and 300 mm downstream location. While

four different speeds were experimentally extracted, a tunnel speed of 1 m/s was used for

validation. The experimental profile at 158 mm downstream of the leading edge was used

as the inlet condition and the profiles at 250 mm and 300mm were used to validate the

growth of the boundary layer. To analyze the boundary layers, both the vertical height

and the velocity were scaled. The velocity (u) was scaled with the free stream velocity

(U∞), and the vertical height (y) was scaled with the 99% boundary layer thickness (δ).

This allows for profiles to be compared even if they are at different downstream locations if
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they exhibit self similarity. Fig. 9 shows these scaled profiles extracted for the inlet, which

appears to follow the laminar flat plate solution (Blasius solution) for all speed (i.e. they

are self-similar). Fig. 10 shows a velocity contour plot of the developing laminar boundary

layer that was modeled using these initial conditions.

Figure 9: Experimental boundary layer profiles at x = 158 mm. Results are compared

against the Blasius solution for a laminar flat plate and the turbulent 1/7th power-law

velocity profile.

The next step was to validate the computational data collected with the experimental

data. Fig. 11 shows the experimental and computational results as well as the exact solution

for a laminar flat plate (Blasius solution). This figure does not show the full boundary layer

as the experimental methods used to extract the data could not get data within y/δ < 0.3.

Nevertheless, looking at the experimental and computational results, the results match

extremely well, despite the limitation of data in the near wall region. Based on this, the

designed simulation was judged to adequately model the developing boundary layer.
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Figure 10: Contour plot of the velocity magnitude at U∞ = 1 m/s, which shows the

developing laminar boundary layer.

Figure 11: CFD and PIV comparison of y/δ (boundary layer scaled height) versus

u/U (free stream scaled velocity) for a laminar boundary layer over a flat plate at two

downstream locations.
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4.4.2. Flat Plate with CVG

Following the modeling of the flat plate, the next step was to model the flat plate with

CVGs attached. This was accomplished by cutting the CVG geometry out of the previous

domain to create the 3D geometry of the backward-facing CVG step (Fig. 12). For this

simulation, there were also three different inlet velocity profiles used (0.6, 0.9 and 1.15 m/s),

all taken at the same 158 mm downstream location. The simulations explored how the CVG

altered the flow by investigating changes in the velocity profiles as well as the distribution

of wall shear stress. Velocity contour plots in Fig. 13 show the flow as it passes over a

peak and a valley. This condition had a free stream speed of 1.15m/s inlet case and shows

stark differences between the two spanwise locations (peak and valley). Fig. 14 shows a

closer look at the reattachment region of the two steps and highlight their differences. Flow

over the valley seems to have a more linear or convex reattachment region while the peak

has a more traditional concave region that looks similar to a traditional BFS. Before this

data was to be compared against experimental data, the mesh dependence of the solution

had to be analyzed. Table 3 shows the 4 mesh iterations used to test this dependence with

their corresponding shear diamond length (Ld) and boundary layer heights (δ99). This table

shows that at the most refined mesh, the solution is not dependant on the mesh sizing.

Figure 12: Simulation domain used to model the flow over a flat plate with CVGs.

Flow is from left to right with the CVG making a 1.5 mm backward facing step.
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Figure 13: Contour plot of the velocity magnitude from the simulation showing flow

over the step at the (left) valley location and (right) peak location. Flow is from left to

right and the dashed lines indicate 7 step heights downstream of step.

Figure 14: Contour plot of the velocity magnitude showing reattachment for (left)

valley and right (peak).
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Table 3: Values of Ld and δ99 showing mesh dependence of solution. Where P and V

denote peak and valley respectively.

Mesh Ld δ99 @ x = 0.1 m δ99 @ x = 0.3 m (V) δ99 @ x = 0.3 m (P)

6,000,000 0.364 m 4.50 mm 5.10 mm 6.2 mm

12,000,000 0.324 m 3.90 mm 4.27 mm 5.15 mm

35,000,000 0.327 m 3.85 mm 4.24 mm 5.10 mm

65,000,000 0.327 m 3.83 mm 4.25 mm 5.10 mm

This data was then used for validating and verifying the simulations that utilized

the CVG geometry. The starting point of this comparison involves the boundary layer

characteristics. First, a qualitative comparison of velocity magnitude at the peak and valley

locations was undertaken. Looking back at Fig. 13, there appears to be a very significant

difference between the flow past the peak and the valley. While the flow past the two

locations vary significantly they both appear to reattach at the expected 7 step heights (H)

downstream of the step. This expected reattachment length holds true for both even though

it appears that the flow past the peak is transitioning from laminar to turbulent while the

flow past the valley remains laminar. This observation is very intriguing as the valley step

is upstream of the peak step. Due to field of view limitations of the experimental setup,

flow immediately downstream of the valley (flow between the valley and peak streamwise

locations) could not be compared with experimental data. However, a comparison of data

immediately downstream of the peak can be seen in Fig. 15 and shows that there is a very

similar behavior in both of the images. Even with the lack of data right at the valley step, this

comparison shows very strong similarities between the two which verify that the simulation

is nominally modeling the flow.
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Figure 15: Velocity magnitude of flow over the peak for (left) experimental and (right)

computational. Black dashed lines indicate 7 step heights downstream of the step.

Qualitative comparisons are insightful but to validate the simulations, quantitative

comparisons are needed. This was done by analyzing the boundary layer shape factor for

both experimental and computational results. The shape factor is defined in Eq. 6 as the

ratio of displacement thickness to the momentum thickness. It is important to note that

experimental data could not be taken directly downstream of the valley. Therefore, all

of the plots contained in Fig. 16 start at the peak downstream location of 405 mm. The

top row of Fig. 16 shows the shape factors for the valley. These plots show that at the

lowest inlet speed (0.6 m/s), the flow remained laminar even past the downstream peak

location. However, while both data sets (at 0.6 m/s) show that the flow remains laminar,

the plots do not match. The experimental data is showing a transitional boundary layer and

the computational data is showing transition. A likely cause of this is that computational

simulations determine an exact location of transition, while real flows do not transition

instantaneously. So, while these two data sets are not in complete agreement they both

show that the flow is transitioning at this location. Fig. 17 shows the two boundary layers

at this inlet speed further downstream where the peak location has transitioned. This plot

shows how drastically different the two velocity profiles (peak and valley) are at the same

downstream location. At 0.9 m/s, the shape factor shows that the boundary layer was

transitioning right at the peak location. For this speed, Fig. 17 shows that while both of the
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Figure 16: Boundary layer shape factor plots downstream of (top row) valley and

(bottom row) peak at inlet speeds of (left column) 0.6 m/s, (middle column) 0.9 m/s ,

and (right column) 1.1 m/s compared against Blasius and turbulent literature values

[27]. Black vertical line indicates location of the step and x-axis is Reynolds number

based on downstream length (Rex).

velocity profiles are turbulent, they are not identical. Thus, the CVG appears to impart a

spanwise variation in the transition location, but also in the boundary layer characteristics

after transition has occurred. In looking at this law of the wall plot, it is important to note

that there is an offset in the log-law region. This offset is a known issue and is a result

of the filtering that is inherent to LES due to its use of lower order schemes to solve the

governing equations [26]. Lastly, at the highest speed of 1.15 m/s the flow seems to already

be turbulent as it reaches the peak location. The bottom row of Fig. 16 shows that at all

three of the measured speeds, the flow seems to transition to turbulence just past the peak

step. In summary, at the three tested speeds, the shape factor of the boundary layer was

dependant on the inlet speed past the valley, but not past the peak, showing that the CVG

imparts a spanwise variation in the boundary layer characteristics.
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Figure 17: Law-of-the-wall velocity profiles for two inlet speeds (0.6 and 0.9 m/s) at

the valley and peak 1 CVG length (105 mm) downstream of the peak step.

4.5. Computational Results

Following the validation and verification of the boundary layer characteristics, it

concluded that the simulations could successfullymodel the flowpast theCVG.This resulted

in the ability to extract data from the simulations that, if solely relying on experiments, could

not be obtained. The data that was extracted from the simulation following its validation was

the wall shear stress for comparisons between the simulations and the flight test experiments.

Wall shear stress was calculated and the resulting distribution is shown as a contour plot in

Fig. 18. The first use of the wall shear data was to examine if patterns seen in the contour

plots matched with the shape factor plots in Fig. 16. It was concluded that the observations

in the shape factor are supported by the wall shear stress images shown in Fig. 18, which

shows low shear diamonds occurring downstream of the valley. Based on the definition of

wall shear,
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τ = µ
∂u
∂y
, (19)

a smaller velocity gradient in the y (vertical) direction results in a lower shear stress on

the wall, resulting in a low wall shear stress in laminar regions and a higher shear stress in

turbulent areas. An example of this conclusion can be seen in Fig. 19 where the boundary

layer (U∞ = 0.6 m/s) downstream of the valley is showing transition at the end of the shear

diamond. Using this definition of the shear stress, as well as the qualitative comparison of

Fig. 19, the shear diamonds match up well with the shape factor. The flow downstream of

the valley is transitioning to high shear at the same locations where the shape factors were

changing, as well as the shear stress being high past the peaks at all speeds.

Figure 18: Contour plots of the wall shear stress magnitude for three different inlet

speeds (0.6 m/s, 0.9 m/s, and 1.2 m/s). Flow is from left to right.
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Figure 19: Contour plot of the wall shear and velocity magnitude showing the relation

between the shear diamond and transition location at 0.6 m/s. Flow is from left to

right and high shear values are shown in gray, while low shear is white.

Further investigation was performed with the wall shear stress data by comparing it

to the flight tests performed by Edge Aerodynamix. First, qualitative comparisons indicate

the low shear diamond feature was seen both in flight and the water tunnel. Fig. 20 shows a

comparison of the diamonds between flight (b) and CFD (a & c). Images (b) and (c) show

a strong similarity between flight testing and CFD, but this comparison is only qualitative

due to the fact that the size of the diamonds can be adjusted with color scale. Next, looking

at (a) and (c), a clear dependence on ReH is shown. It appears the larger the value of ReH ,

the smaller the shear diamond. Following this observation, a more in depth analysis of the

diamond size was performed by comparing the ratio of the length of the diamond (Ld) to the

length of the CVG geometry (L). This method was performed on all flight images as well

as on the simulation data. Fig. 21 is an example of how these measurements were acquired.

After examination it was found that not only was there a relationship between Ld/L and

ReH , but also the L/W ratio of the CVG. In Fig. 22, the ratio of the diamond length (Ld)

to the CVG length (L) is plotted versus the ratio of the length (L) and the width (W). Data

from the flight test and CFD are shown at the three different Reynolds numbers. Error
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(a) ReH = 900 (CFD) (b) ReH = 1300 (flight test) (c) ReH = 1350 (CFD)

Figure 20: Wall shear stress comparison at varying ReH: (a) ReH = 900, (b) ReH =

1300, and (c) ReH = 1350)

bars on the flight test data are the standard deviation from the multiple CVG measurements

at the same L/W value. It is not surprising the the CFD and the flight scale data are

different, even at the same ReH , since the flight scale length is time sensitive and the CFD

can be adjusted based on threshold levels. However, both flight and CFD show that Ld/L

decreases as ReH increases. Furthermore, the flight test data shows an L/W dependence

with Ld/L decreasing with increasing L/W . Fitting the data to a power-law function results

in Ld/L = 3.1ReH
−5/8, Ld/L = 2.6ReH

−5/8, Ld/L = 1.9ReH
−5/8 for ReH = 1360, 1460,

and 1655, respectively. All of these fits are plotted in Fig. 22 and the percent difference

between each of the experimental data points and their corresponding predicted value can

be seen in Fig. 23. These plot shows that as the L/W ratio of the CVG or the ReH increases,

the size of the shear diamond scaled by the CVG length decreases.
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Figure 21: Visual of how the shear diamonds were sized

Figure 22: Shear diamond length (Ld) scaled with the CVG length (L) plotted versus

the CVG L/W ratio (and ReH). Dashed lines are the power-law fit for each ReH .
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Figure 23: Percent difference of fitted data versus actual data for CFD and experi-

mental.

The next data set that was extracted from these validated simulations was the skin-

friction coefficient (C f ), defined by,

C f =
τw

1
2 ρU2

∞

. (20)

It was vital to investigate how the CVG impacted skin friction as it is a direct component

of drag. The flow features seen in the skin friction contour plots ((Fig. 24) look identical to

those in the wall shear (Fig. 18), but the magnitudes will vary. This is due to Eq. 20, where

the wall shear stress is scaled by the freestream velocity (U∞). Investigating these plots,

it appears that the lowest speed (0.6 m/s) has the largest areas of high shear. This speed

had the largest shear diamonds, meaning the largest spanwise variation in transition, which

indicates that the regions of highest shear reside in regions of transition. This observation

indicates that more prominent the features are in the skin friction, the higher the value ofC f .

Performing a surface average on the plate downstream of the CVG shows a similar pattern

with average C f values of 0.0029, 0.0028, 0.0027 for 0.6, 0.9, and 1.15 m/s respectively.

The conclusions from the skin friction show a similar pattern to observations made in
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Chapter V.

Figure 24: Contour plots of the wall shear stress magnitude for three different inlet

speeds (0.6 m/s, 0.9 m/s, and 1.15 m/s). Flow is from top to bottom.

The final sets of data that were extracted from these validated simulations were the

Q-criterion and streamlines. The Q-criterion defines a vortex as,

Q = 0.5(
��Ω2�� − ��S2��) > 0, (21)

where Ω is the vorticity and S is the strain rate. This equation states that a vortex exists

when the difference between the vorticity and strain rate is greater than zero [28]. Due to

the use of three different inlet speeds (0.6, 0.9, 1.15 m/s) a scaled threshold was set so that

a comparison could be made about the location of structure formation (as a higher velocity

would inherently generate more vorticity). To accomplish the visualization of the vorticty

formation, isosurfaces were utilized (isosurfaces are 3D surfaces that are only present when

the value of Q-criterion was above the threshold), allowing for a 3D visual representation of

the vorticity. Fig. 25 shows the Q-criterion isosurfaces for all three inlet speeds. This figure

shows that the vortex formation for these simulations is tied to the transition locations with

the strongest features located where the flow is becoming turbulent. These figures match

up extremly well with the wall shear plots that show that at lower inlet speeds, the spanwise

variations in the fluid structures are more apparent.
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(a) 0.6 m/s

(b) 0.9 m/s

(c) 1.15 m/s

Figure 25: Isosurface of the Q-criterion for the inlet speeds of (top) 0.6 m/s, (middle)

0.9 m/s, and (bottom) 1.15 m/s.
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Next, Fig. 26 shows streamlines as they pass over the CVG for the simulation with

an inlet speed of 0.6 m/s. A streamline is a flow line that shows how a fluid particle travels

through the system. This figure shows streamlines that are seeded from the wall as well as

from inside the boundary layer (1.5 mm off of the wall) to show how the CVG effects flows

at different vertical locations. These images show how the flow in certain regions interact

with the CVG and the color scale is the wall distance of the streamline. The top picture

shows that the flow in the near wall region is directed to the peaks of the CVG and almost

none of the flow travels directly off of the valley. The bottom image shows streamlines that

are seeded from inside the boundary layer and show that as they go over the peak, the fluid

is shifted up, and as the flow passes over the valley, the flow is driven down. This rise off of

flow over the peak is supported by the fact that the near wall flow is drawn to the peak. This

causes an increase in the amount of flow at the peak which, in turn, causes the boundary

layer to rise. Also, due to the lack of flow coming from the near wall region to the valley,

flow is pulled down from the boundary layer to the near wall region. This region where the

flow is pulled down lines up with the low shear diamond feature previously discussed in

this section and it is where the flow remains locally laminar.
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Figure 26: Streamlines that are seeded from the (top) wall and (bottom) inside the

boundary layer showing how the flow moves past the CVG.
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4.6. Conclusion

Simulations were built to match water tunnel testing operation conditions with the

goal of replicating results that were seen in both water tunnel testing and flight testing.

The first of these simulations was the validation of a flat plate, achieved by comparing

the growth of a laminar boundary layer using experimental data as the initial conditions.

Following this, simulations were set up with the CVG geometry (L = 105 mm, W = 76

mm, and H = 1.5 mm) that was of same domain size (1 m long by 0.3 m wide) as the flat

plate simulation. These simulations were run at three different inlet conditions; 0.6, 0.9,

and 1.15 m/s. The CVG simulations were verified by examining the velocity distribution

downstream of the peak and the valley and comparing to PIV results. These simulations

were then validated with water tunnel and flight test data by quantitatively comparing the

boundary layer and wall shear characteristics. Four primary conclusions can be made from

these simulations and comparisons:

1. The flat plate simulation was validated as the boundary layer profile matched experi-

mental data, which followed closely to the Blasius laminar solution.

2. The CVG simulations were verified and validated by comparing boundary layer

characteristics with the experimental results as well as analyzing the wall shear stress

distribution compared with flight scale observation.

3. The CVG imparts spanwise variation in the wall shear stress of the flow.

4. The wall shear diamonds were found to be a repeatable feature in both CFD and flight

testing. These features have both a L/W and ReH dependence.
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CHAPTER V

SIMULATION II: FLIGHT SCALE

5.1. Simulation Parameters

Two sets of simulations were developed to study CVG behavior at flight scale. The

first set of simulations in this section were built to analyze the flow physics on an in flight

wing, with the explicit goal to match the in flight flow properties that would be seen on the

Boeing 737 at the CVG’s application location (10% cord). Due to the nature of the CVG’s

size, the simulations require high spatial resolution at the wall. The CVG sizes for these

simulations are provided in Table 4. Each simulation had a width of 4 full CVG widths

(W) and a total of 4 different CVG geometry configurations (varying L/W) were used. A

flat plate and a backward facing step (BFS) were also simulated for comparison. This was

done to examine not only the effect of the L/W ratio on flow properties past the CVG, but

also how the CVG compares to other geometries. Due to these simulations being based

on the in flight physics, the fluid properties of air at 10,000 m (cruise altitude) were used.

It is important to note that while Boeing 737 aircraft cruise at around Mach 0.7, the flow

is locally supersonic in the region that the CVG is applied (see Fig. 3 for location on the

wing). The individual flow and geometry properties are given in Table 5 and further details

regarding the simulations can be found in the Computational Methods chapter (Chapter

III.).
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Table 4: Geometry and flow properties of flight scale simulations.

L (m) W (m) H (m) L/W ratio

CVG-1 0.0267 0.0193 0.367 1.36

CVG-2 0.0134 0.0096 0.367 1.36

CVG-3 0.0267 0.0096 0.367 2.72

CVG-4 0.0134 0.0193 0.367 0.69

Table 5: Geometry and flow properties of flight scale simulations.

Parameter Value

H 0.367 mm

L 13.35 − 53.4 mm

W 9.65 − 38.6 mm

x 100 mm

Dimension 0.45 x 0.03-0.14 x 0.03 m

Altitude 10, 000 m

ρ 0.467 kg/m3

µ 1.46 × 10−5 Pa-s

U 400 m/s

δ 7 mm

Cell Count 30 − 50 million cells

The second set of simulations were built based on an experiment conducted by

NASA on transonic wings with an aft facing step [29]. These experiments utilized the

RAE 2822 airfoil and looked at the pressure, drag, and lift coefficients with varying step

scaling and locations. The purpose of these simulations were to validate a full 2D airfoil

simulation (with a step), get crucial data for comparison to theBoeing 737 based simulations,
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and quantify the effect of a aft facing step on an airfoil. These simulations were all 2D

simulations utilizing a RANS (k-ω) solver with inlet and boundary conditions based on the

experimental testing. The mesh was made utilizing an unstructured polyhedral mesh with

the implementation of a table based mesh adaption. This mesh adaption found regions with

a high density gradient and decreased the mesh size, which allowed the ability to capture

the supersonic features in the flow. The individual geometry and flow properties are given

in Tables 6 and 7.

Table 6: Geometry and flow properties of 2D RAE 2822 simulations.

Parameter Value

α 2.31 degrees

H 3 mm

Cord 1 m

Dimension 130 x 60 m

ρ 1.48 kg/m3

µ 5.33 × 10−5 Pa-s

U 0.729 Mach

Cell Count 5 million cells
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Table 7: Geometry and flow properties of 2D BFS and ramp simulations.

Parameter Value

H 2 mm

x 100 mm

Dimension 1 x 2 m

Altitude 10, 000 m

ρ 0.467 kg/m3

µ 1.46 × 10−5 Pa-s

U 400 m/s

δ 7 mm

Cell Count 3 million cells

5.2. Results and Discussion

5.2.1. Wall Shear Stress

As concluded by the water tunnel simulations, the CVG imparts spanwise variation

in the wall shear stress of the flow in the subsonic regime. Therefore, it was important

to see if this held true in the supersonic regime (flight scale). Also, since the goal of this

technology is to decrease the fuel consumption of an aircraft, it was vital to quantify the

impact these CVGs had on the overall skin friction drag (wall shear stress). Thus, several

different simulations were run and time averaged wall shear stress was captured. The wall

shear stress was calculated using shear stress relationship (Eq. 19). Due to all of the flight

scale simulations having the same free stream speed, wall shear stress was converted to skin

friction coefficient (Eq. 20) and was found to have identical contour plots. These results

are found in Figs. 27 and 28, including two CVG geometries as well as a BFS. This data

was used to analyze the spanwise variation of the wall shear past the CVG in comparison

with a BFS and to determine how the wall shear modification varied with CVG L/W .
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Next, spanwise averages were taken (vertical slices of Fig. 27) to examine the downstream

dependence of the wall shear, which is shown in Fig. 29.

Figure 27: Streamwise and spanwise distribution of the time averagedwall shear stress

for the (top) CVG with L/W = 1.36, (middle) CVG with L/W = 2.72, and (bottom)

BFS located at the CVG valley location. Flow is from left to right at Mach 1.34.

46



Figure 28: Streamwise and spanwise distribution of the time averaged skin friction

coefficient (C f ) for the (top) CVG with L/W = 1.36, (middle) CVG with L/W = 2.72,

and (bottom) BFS located at the CVG valley location. Flow is from left to right at

Mach 1.34.
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Figure 29: Comparison of time averaged wall shear vs downstream distance at Mach

1.34.

The first flow characteristic investigated was if wall shear stress modification seen

in the laminar water tunnel based simulations were also seen in the flight scale turbulent

simulations. Figures 18 and 27, illustrate the differences for the two conditions. In both

figures, evidence suggests that the CVG imparts spanwise variation in the wall shear.

However, they do not follow the same pattern. The laminar, subsonic case has a low shear

diamond that forms between the CVGs while the flight case (turbulent and supersonic)

shows a high shear feature between the CVGs with low and high shear streaks persisting

downstream from the peaks. This is likely due to the drastically different flow regimes

where the CVGs reside. The laminar case has diamonds that form in the regions where the

CVG causes spanwise variation in the shape of the boundary layer (laminar vs turbulent),

while the flight scale CVGs are turbulent everywhere and are in a supersonic flow. Due

to this high Mach number, the flight scale CVGs see an expansion fan over the step. This

increase in Mach (due to the fan), as well as the compression of the boundary layer seen

in Fig. 30 is conjectured to be the cause of these high shear features. These flight features

also appear to be related to the L/W ratio of the CVG as the L/W = 2.72 in Fig. 27 shows

weaker and smaller features than that of the L/W = 1.36 CVG. This variation between
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different L/W ratios CVGs can also be seen in Fig. 29, where a relationship is indicated

between L/W and downstream (spanwise averaged) wall shear stress. It appears the higher

the L/W CVG ratio, the lower the average wall shear as well as less prominent spanwise

features and streaks. Therefore, it can be concluded that the flight scale CVGs also impart

spanwise variations in the wall shear that is dependent on the L/W ratio. However, this

distribution of wall shear stress differs from the laminar subsonic case.

Figure 30: Velocity contour plot showing the expansion fan that forms over the CVG

step. The dashed black line indicates the valley step location.

5.2.2. Vortex Formation and Streamlines

As the name CVG (Conformal Vortex Generator) implies, it was important that the

vortex formation off the CVG be investigated. This was done by utilizing the Q-criterion.

The Q-criterion defines a vortex as,

Q = 0.5(
��Ω2�� − ��S2��) > 0, (22)

where Ω is the vorticity and S is the strain rate. This equation states that a vortex exists

when the difference between the vorticity and strain rate is greater than zero [28]. However,

since this flow is highly turbulent, there is quite a bit of vorticity in the flow, making it
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difficult to distinguish between just turbulence and the dominant coherent vortices of interest.

Therefore, a threshold was set so that only regions of high Q-criterion were shown to better

allow for visualization of the vortex structures being produced by the CVGs. To accomplish

this, isosurfaces were utilized (isosurfaces are 3D surfaces that are only present when the

value of Q-criterion was above the threshold), allowing for a 3D visual representation of

the vortex. Two examples of this can be seen in Fig. 31 and Fig. 32. These two figures

show an example of the Q-criterion isosurfaces downstream of a BFS and a CVG. These

cases were run at the same conditions, with an inlet Mach number of 1.34. It was also of

importance to see how this generation of vortices changed between the peak and valley of

the CVG simulation. To visualize this, 2D isosurface planes were generated at the peak and

valley spanwise locations which can be seen in Fig. 33.

Figure 31: Q-criterion isosurface showing vortex formation past the CVG.
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Figure 32: Q-criterion isosurface showing vortex formation past a BFS.

Figure 33: Q-criterion isosurface planes showing vortex formation past a peak and

valley of CVG.
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The spanwise variation in wall shear, discussed in the previous section, is supported

further by the Q-criterion isosurfaces. Fig. 31 shows hairpin like vortex structures being

shed off of the CVG peaks while there is minimal vortex formation off of the valleys.

Comparing this figure to Fig. 27, it appears that the locations of vortex formation are in

the areas of high wall shear, with the center of these hairpin structures located in the same

areas as the low shear streaks. This observation is also seen in [30], where high friction (or

wall shear) regions are formed at the legs of the hairpin vortices when they are generated

in the near wall region. This provides evidence that the CVG is energizing the boundary

layer and generating coherent vortex features. For comparison, see Fig. 32, which shows

the same isosurface downstream of the BFS. This figure shows that with a traditional BFS,

small uniform vortex formation downstream of the step occurs but with a CVG, strong

vortex formation occurs primarily downstream of the peak with regions of low vorticity in

between. The difference in the spanwise vortex formation of the CVG is seen more clearly

in Fig. 33, where isosuface planes demonstrate the size difference in the vortices off of the

peak of the CVG versus the valley.

Next, Fig. 34 shows streamlines as they go over the CVG, both seeded from the

wall and inside of the boundary layer. First, comparing these images to Fig. 26 (subsonic

simulations), there appears to be very similar behavior. The flow from the wall is directed

towards the peak with almost none of the flow going over the valley and the flow in the

boundary layer is driven up past the peak and driven downpast the valley. These observations

match up with the wall shear and vortex formation observations. The hairpin vortex features

are forming in the same locations in which the flow is drawn from the wall and pulled up

into the boundary layer and the regions of low vortex formation line up with the regions

where the flow is drown down into the near wall.
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Figure 34: Streamlines that are seeded from the (top) wall and (bottom) inside the

boundary layer showing how the flow moves past the CVG.
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5.2.3. 2D RAE 2822

The 2D RAE 2822 simulation had the purpose of validating a small scale step on an

airfoil. This step is vital as there is no validation data for a CVG flight case. The experiment

chosen examined the effect of an aft facing step (in the same cord position as the CVG)

on an airfoil. To compare this simulation to the experimental data, coefficients of pressure

(Cp), normal force (Cn), and drag (Cd) were examined. Comparisons of Cn and Cd can be

seen in Table 8 and to see a comparison of the Cp plot, see Fig. 35. AMach number contour

plot was also created to visualize the flow over the airfoil, this can be seen in Fig. 36.

Table 8: Comparison between CFD and Experimental Results.

Parameter CFD Experiment %-Difference

Cn 0.736 0.743 0.95%

Cd 0.0128 0.0127 0.8%

Figure 35: Plot showing pressure coefficient versus cord location at top and bottom of

surface.
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Figure 36: Distribution of the local Mach number around the RAE 2822 airfoil.

The results of the RAE 2822 simulation show that overall the flow can be simulated

accurately. However, there are some differences in the locations of the supersonic features

as well as some mesh issues at the trailing edge. These differences in the location of the

features can be seen in Fig. 35. The downstream shock does not have the exact same cord

location as seen in the experiments (0.5 for CFD and 0.55 for experiment) and the initial

fan at the leading edge has a slightly lower Cp value for CFD. The location of the shock is

highly dependent on the particular experimental flow conditions as well as the solver that

was used in the simulation [22] [31] [32]. The trailing edge issue is due to the limitation of

Star-CCM+’s mesher not allowing for a finer mesh at the trailing edge tip. However, even

with these issues, the flow physics match very well. Specifically, the bottom of the airfoil

(that has no step) matches almost exactly, with the only deviation from the experimental

data coming at the leading edge fan and the downstream shock. A mesh dependence test

was run to further ensure the solution obtained was not dependent on the mesh size. Table

9 shows 3 mesh iterations and their corresponding values of Cn and Cd . As the coefficients

clearly follow experimental data and the mesh independence of the solution, the RAE 2822

airfoil was judged to adequately match the experimental data and successfully model the
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flow over a small step.

Table 9: Mesh dependence of Cn and Cd for the RAE 2822 airfoil simulations.

Mesh Cn Cd

400,000 0.733 0.0127

1,200,000 0.735 0.0128

5,000,000 0.736 0.0128

Experimental 0.743 0.0127

5.2.4. 2D Ramp

Following the full scale 2D airfoil simulations, a smaller domain was made to more

precisely simulate the flow over the step on the wing. These simulations were performed to

see how the addition of a ramp downstream of a BFS would mitigate the negative impacts

of the BFS. Fig. 37 shows a local Mach contour plot of the flow over the BFS. The focus

of this comparison was to see if the addition of a ramp alters the supersonic features (see

Fig. 38).

Figure 37: Mach number contour plot showing the flow over a BFS.
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Figure 38: Mach number contour plot showing the flow over a BFS with a downstream

ramp.

First, focusing on just the BFS, there is a clear expansion fan forming over the step.

This fan causes the flow to increase in speed and results in an increase in pressure drag.

Based on insights from Kibble [21], it is determined that the stronger the expansion fan,

the larger the increase in pressure drag. Therefore, the metrics of reducing the impact of

the BFS on the flow chosen to be investigated were the maximum value of Mach number

and the change in total pressure. Next, Fig. 38 shows the same BFS as Fig. 37, but with

the addition of a downstream ramp geometry. This Mach contour shows that the addition

of the ramp reduced the strength (or maximum Mach value) of the expansion fan over the

step. However, this ramp generates an additional, but very weak, fan at the trailing edge

of the ramp. Further analysis was then performed by comparing how changing the ramp

geometry affected this expansion fan mitigation. Parameters such as upstream ramp height

(Hru), downstream ramp height (Hrd), ramp length (Lr), and distance of ramp from the

BFS (Dr) were altered. Table 10 shows all simulations that were run, along with their

corresponding maximum Mach number and total pressure change. This table shows that,

based on the geometries tested, the BFS was the worst case, while the best case was a ramp

that has an Hru close to the height of the BFS and a minimal Dr . It was also shown that

Hrd has minimal impact on the effect of the ramp, as long as it remained reasonably small
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(< 0.5 mm). This points to the ideal case being an infinite (Lr) ramp, of same (Hru) as

the BFS, with zero (Dr) (the equivalent of no BFS), and a minimal downstream step (Hrd).

Therefore, while conclusions can still be drawn from these results, it is important that the

physical constraints be set to limit the range of parameters to what could be deployed on an

actual aircraft wing. These restriction are based on the suggested guidelines by the Federal

Aviation Administration (FAA) and can be seen in Fig. 39. These guidelines are a minimum

BFS (or slat step) height of 2 mm, maximum forward facing step (FFS) height of 0.5 mm,

maximum Hru of 1.5 mm, with a minimum slope of 1/5 on the growth from the wall to max

Hru.

Figure 39: Schematic showing the constraints of the downstream ramp.
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Table 10: Changes in ramp parameters versus maximumMach number and pressure

change.

Geometry Total Pressure Change (Pa) Max Mach

BFS 90.63 1.585

Prelim Ramp 75.89 1.499

Ramp w/ Hrd increased 77.54 1.499

Ramp w/ Hrd decreased 75.47 1.499

Ramp w/ Lr increased 75.7 1.498

Ramp w/ Hru increased 70.54 1.429

Ramp w/ Dr increased 76.22 1.466

5.3. Conclusion

Simulations were built to analyze the local flow physics of the CVG in its real world

application on a Boeing 737 wing and to analyze the effect of steps and ramps on airfoils.

The first sets of simulations were compared to those seen in Chapter IV to see if the effects

on wall shear and skin friction were consistent. Next, Q-criterion was utilized to observe

the vortex formation of the CVG to see if it, as its name implies, generates significant

vortex features. The RAE 2822 simulations were then performed as a necessary step to give

credibility to smaller scale models. Following the validation of the RAE 2822 simulations,

analyses were performed on a ramp downstream of an aft facing step to see if it was possible

to mitigate the negative impact of the step. Four primary conclusions can be made from

these investigations:

1. The flight scale CVGs impart a spanwise variation in the wall shear stress of the flow

but differs from the laminar scaling.

2. A L/W ratio dependence is seen in both the spanwise variations aswell as the averaged

values of wall shear.
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3. The CVG was shown to produce coherent structures that persisted downstream of the

step, specifically, strong vortex formation off the peak and not the valley. A clear

difference between the vortex formation off of the CVG versus a traditional BFS was

also shown.

4. A ramp downstream of an aft facing step on a airfoil dampens the effects of the

expansion fan that is formed on the BFS. It was discovered that altering the ramp

geometry can change the effectiveness of the ramp and that the optimal ramp is

as close to the height and downstream location of the BFS as allowed by physical

constraints.
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CHAPTER VI

Conclusions and Recommendations

6.1. Piper Cherokee Validation

Simulations were built to match the conditions of water tunnel testing of a flat plate

(with and without a CVG) performed at Oklahoma State University [25]. These simulations

had a domain size of 1 m long by 0.3 m wide. Both the flat plate and flat plate with CVG

simulations had the same domain size, with the latter containing the CVG step geometry

of length 105 mm, width 76 mm, and height 1.5 mm. Computational data was extracted at

the location corresponding to the experimental testing for validation purposes. Following

validation, computational data was then used to investigate the flow properties as well as

compare with further experimental testing performed on the Piper Cherokee aircraft by

Edge Aerodynamix. Four primary conclusions can be made from these simulations and

comparisons:

1. The flat plate simulation was validated as the boundary layer profile matched experi-

mental data, which followed closely to the Blasius laminar solution.

2. The CVG simulations were verified and validated by comparing boundary layer

characteristics with the experimental results as well as analyzing the wall shear stress

distribution compared with flight scale observation.
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3. The CVG imparts spanwise variation in the wall shear stress of the flow.

4. The wall shear diamonds were found to be a repeatable feature in both CFD and flight

testing. These features have both a L/W and ReH dependence.

6.2. Flight Scale

Simulations were created to investigate the flow physics of the CVG utilizing the

local flow physics at the application location on a Boeing 737 wing. These simulations

were compared to those seen in Chapter IV to analyze if the conclusions drawn from those

simulations were repeated in the different flow regimes of the two simulations. First, wall

shear and skin friction were investigated to see if the patterns seen were consistent. Next,

Q-criterion was utilized to observe if the CVG, as its name implies, generates significant

vortex features. Following these investigations, a 2D RAE 2822 simulation was built for

validation and as a necessary step to give credibility to smaller scale models. Lastly,

simulations were built looking at the local effects of an aft facing step with a downstream

ramp. These simulations were designed to explore if this downstream ramp could negate the

negative impact of the step. Four primary conclusions can be made from this investigation:

1. The flight scale CVGs impart a spanwise variation in the wall shear stress of the flow

but differs from the laminar scaling.

2. A L/W ratio dependence is seen in both the spanwise variations aswell as the averaged

values of wall shear.

3. The CVG was shown to produce coherent structures that persisted downstream of the

step, specifically, strong vortex formation off the peak and not the valley. A clear

difference between the vortex formation off of the CVG versus a traditional BFS was

also shown.

4. A ramp downstream of an aft facing step on a airfoil dampens the effects of the
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expansion fan that is formed on the BFS. It was discovered that altering the ramp

geometry can change the effectiveness of the ramp and that the optimal ramp is

as close to the height and downstream location of the BFS as allowed by physical

constraints.

6.3. Recommendations

Although a few conclusions have been made on the flow characteristics of CVGs,

further work is still necessary. Moving forward, the impact of the following may be

evaluated:

1. A more in-depth analysis of the validated simulations and experimental data.

2. Study the impact of different CVG geometries on the flat plate.

3. Acquire validation data for the CVG at actual flight conditions on the Boeing 737 to

compare to the results found in this study.

4. Perform simulations to investigate conclusions drawn from [25].

5. Preform further investigation of ramp geometries for utilization downstream of an aft

facing step on an airfoil.
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